**Explaining the Human Visual Brain** 

**Workshop and Challenge** 

Dates: July 19-20, 2019

Place: MIT, Cambridge, MA

algonauts.csail.mit.edu

## **Team and Sponsors**



Team Leader: Radoslaw Cichy Research Group Leader, Freie Universität Berlin



Team Leader: Aude Oliva Principal Research Scientist, MIT



Team Leader: Gemma Roig Assistant Professor, SUTD





Alex Andonian Research Assistant, MIT

Kshitij Dwivedi PhD Student, SUTD



Benjamin Lahner Research Assistant, MIT



Kandan Ramakrishnan Postdoctoral Researcher, MIT



Yalda Mohsenzadeh Postdoctoral Researcher, Research Assistant, MIT MIT



Alex Lascelles



Fern Keniston Program Coordinator and Assistant to the Directors, MIT



Samantha Smiley Administrative Assistant, MIT



**Kim Martineau** Communications Officer, MIT





MIT-IBM Watson AI Lab



**Explaining the Human Visual Brain** 

Workshop and Challenge Dates: July 19-20, 2019 Place: MIT, Cambridge, MA

#### Workshop for Students Day

19 July 2019

**Explaining the Human Visual Brain** 

| Time               | Event                                                                |
|--------------------|----------------------------------------------------------------------|
| 12:30 pm - 1:00 pm | Registration / Welcome                                               |
| 1:00 pm - 2:00 pm  | Introduction to Neural Networks<br>Gemma Roig                        |
| 2:00 pm - 2:15 pm  | BREAK                                                                |
| 2:15 pm - 3:15 pm  | Introduction to Brain Imaging: fMRI and MEG/EEG<br>Yalda Mohsenzadeh |
| 3:15 pm - 3:30 pm  | BREAK                                                                |
| 3:30 pm - 4:30 pm  | Comparing Brains and DNNs: Methods and Findings<br>Martin Hebart     |
| 4:30 pm - 4:45 pm  | BREAK                                                                |
| 4:45 pm - 5:45 pm  | Comparing Brains and DNNs: Theory of Science<br>Radoslaw Cichy       |
| 5:45 pm - 6:00pm   | Summary                                                              |

**Explaining the Human Visual Brain** 

| 20 July Schedule    | Event                                               |
|---------------------|-----------------------------------------------------|
| 8:30 am – 9:00 am   | Breakfast                                           |
| 9:00 am – 9:15 am   | Introduction by Radoslaw Cichy                      |
| 9:15 am – 9:35 am   | Matt Botvinick                                      |
| 9:35 am – 9:55 am   | Aude Oliva                                          |
| 9:55 am – 10:15 am  | Thomas Naselaris                                    |
| 10:15 am – 11:00 am | Posters and Coffee                                  |
| 11:00 am – 11:20 am | David Cox                                           |
| 11:20 am – 11:40 am | James DiCarlo                                       |
| 11:40 am – 12:00 pm | Kendrick Kay                                        |
| 12:00 pm – 1:30 pm  | Lunch on Your Own                                   |
| 1:30 pm – 1:50 pm   | Introduction to the Algonauts Challenge by Radoslaw |
| 1:50 pm – 2:50 pm   | Invited Talks: Challenge Winners                    |
| 2:50 pm – 3:30 pm   | Posters and Coffee                                  |
| 3:30 pm – 3:50 pm   | Talia Konkle                                        |
| 3:50 pm – 4:10 pm   | Nikolaus Kriegeskorte                               |
| 4:10 pm – 4:30 pm   | Jack Gallant                                        |
| 4:30 pm – 5:00 pm   | Panel Discussion with Speakers                      |
| 5:00 pm – 6:30 pm   | Reception                                           |

#### Introduction to Deep Neural Networks Tutorial

#### Gemma Roig

#### The Algonauts Project

**Explaining the Human Visual Brain** 

Workshop and Challenge

Dates: July 19-20, 2019

Place: MIT, Cambridge, MA

## Overview

#### Introduction

o Artificial Neural Networks

Computational Models of Object Recognition

Artificial Neural Networks for Object Recognition

Applications

#### Alan Turing

**COMPUTING MACHINERY AND INTELLIGENCE**, 1950

"Can machines think?"

# Recognition

Object recognition >>> What is in the image?



# Recognition

We want the algorithms to **learn** to do object recognition given examples of object categories

#### **Training phase:**

The model learns with examples

#### **Testing phase:**

Automatic labelling of instances never seen before by the algorithm

There are different modalities of supervision: fully supervised, unsupervised, semi-supervised, etc.

## Overview

o Introduction

**O** Artificial Neural Networks

Computational Models of Object Recognition

Artificial Neural Networks for Object Recognition

Applications

## **Computational Principles**

Simplified neuroscience: a neuron computes a dot product between its inputs and the synaptic weights



# Simple Perceptron

#### F. Rosenblatt 1957



# Perceptron

#### Types of Nonlinearities



Step functionLinear Rectifier (ReLu)Sigmoid $f(x) = \begin{cases} 0 : x < 0 \\ 1 : x \ge 0 \end{cases}$  $f(x) = \begin{cases} 0 : x < 0 \\ x : x \ge 0 \end{cases}$  $\sigma(x) = \frac{1}{1 + e^{-x}}$ 

Given training samples  $\{\mathbf{x}_i, y_i\}_{\forall i}$  $\mathbf{x}_i \rightarrow \text{input of example } i$ ,  $y_i \rightarrow \text{groundtruth target of example } i$ 



Given training samples  $\{\mathbf{x}_i, y_i\}_{\forall i}$  $\mathbf{x}_i \rightarrow \text{input of example } i$ ,  $y_i \rightarrow \text{groundtruth target of example } i$ 



Initialization:

Initialize the weights w to 0 or small random numbers.

Given training samples  $\{\mathbf{x}_i, y_i\}_{\forall i}$  $\mathbf{x}_i \rightarrow \text{input of example } i$ ,  $y_i \rightarrow \text{groundtruth target of example } i$ 



#### Initialization:

Initialize the weights w to 0 or small random numbers.

#### Iterate:

For each training sample  $\mathbf{X}_i$ :

**1**.Calculate the output value: out = sgn(

$$\left(\sum_{i=0}^{n} x_i w_i\right)$$

Given training samples  $\{\mathbf{x}_i, y_i\}_{\forall i}$  $\mathbf{x}_i \rightarrow \text{input of example } i$ ,  $y_i \rightarrow \text{groundtruth target of example } i$ 



#### Initialization:

Initialize the weights w to 0 or small random numbers.

Iterate:

For each training sample  $\mathbf{X}_i$ :

**1**.Calculate the output value:  $out = sgn\left(\sum_{i=1}^{n} x_i w_i\right)$ 

**2.**Update the weights. 
$$\mathbf{w} = \mathbf{w} + \eta \mathbf{x}_i (y_i - out)$$

# Multi-layer Perceptron

#### Rumelhart et al. 1986



possibly many more layers learning with back-propagation

## Overview

o Introduction

o Artificial Neural Networks

Computational Models of Object Recognition

Artificial Neural Networks for Object Recognition

Applications

#### **Hubel and Wiesel**



Nobel prize (1981)

## **Hubel and Wiesel**





(Hubel & Wiesel 1959)

### The visual ventral stream





#### The ventral stream hierarchy: V1, V2, V4, IT

A gradual increase in the receptive field size, in the complexity of the preferred stimulus, in tolerance to position and scale changes

Kobatake & Tanaka, 1994

### HMAX



Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007



## Overview

- o Introduction
- o Artificial Neural Networks
- Computational Models of Object Recognition
- O Artificial Neural Networks for Object Recognition
- Applications

## Convolutional Neural Networks (CNNs)



Convolutional assumption

LeCun et al. 98

# **Deep CNN (2012)**



Learned with back propagation on GPUs (7 days) ImageNet dataset (1 million labeled images available) Techniques to avoid overfitting

#### Learned with back propagation on GPUs (7 days)

GIGABYTE

# 1. GEN

www.image-net.org





Krizhevsky et al. 12

## **Results on ImageNet**



Image credit: wikipedia

# Results on ImageNet



Image credit: von Zitzwewitz, 2017

## **Object classification**



AlexNet 12







35

# **Convolution 1st Layer**


### **Convolution in Deeper Layers**



Image credit: codelabs google

### Max or Average Pooling



#### Max or Average Pooling





□ Architecture of the network as prior:

Convolutions
Non-linear activation, e.g., ReLU

Use data augmentation in the trainingAffine transformations

**D**ropout

Batch Normalization

### **Rectified Linear Unit**

ReLU (blue line) A.5 A.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -4 -3 -2 -1 0 1 -1 0 1 -2 -1 0 1 -2 -1 0 1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1

Krizhevsky et al. 12



Figure 1: A four-layer convolutional neural network with ReLUs (solid line) reaches a 25% training error rate on CIFAR-10 six times faster than an equivalent network with tanh neurons (dashed line). The learning rates for each net-

#### **D**ropout

training phase: remove stochastically hidden units

\*Hidden units set to 0 with a probability (0.5, changes stochastically)

\*Hidden units can not co-adapt to other hidden units



(a) Standard Neural Net

#### Dropout



(a) Standard Neural Net



(b) After applying dropout.

#### **D**ropout

testing phase: all hidden units used

\*Multiply hidden layers by the dropout probability (0.5, not stochastic)

\*Better generalization



(a) Standard Neural Net

### Learning

#### back-propagation



#### stochastic gradient descent

# **Back-propagation**

Learning based on iterating between:

1. Propagation

- 1.1. Forward pass through NN
- 1.2 Backward pass using partial derivatives

2. Weights updates

(stochastic gradient descend — with mini-batches)

#### Visualization of learned filters



RA

×8

14

x

500

SF.

Layer 3

0%

1

die e

100

y

SE.







Zeiler and Fergus 13

### Visualization of learned filters



http://people.csail.mit.edu/torralba/research/drawCNN/drawNet.html

### **Invariance Properties**



Figure 5. Analysis of vertical translation, scale, and rotation invariance within the model (rows a-c respectively). Col 1: 5 example images undergoing the transformations. Col 2 & 3: Euclidean distance between feature vectors from the original and transformed images in layers 1 and 7 respectively. Col 4: the probability of the true label for each image, as the image is transformed.

### Overview

- o Introduction
- o Artificial Neural Networks
- Computational Models of Object Recognition
- Artificial Neural Networks for Object Recognition
- **O** Applications

# Applications

Use a pre-trained CNN as a feature extractor

Fine-tune on limited data

Train from scratch on big data

# Applications

#### Use a pre-trained CNN as a feature extractor

#### Fine-tune on limited data



### **Object classification**



AlexNet 12







56

# **Object Detection**

#### Faster Region CNN



Ren et al. 16

### **Object Detection**



# Applications

#### Use a pre-trained CNN as a feature extractor

#### Fine-tune on limited data



# **Saliency Prediction**

### Reducing the Semantic Gap in Saliency Prediction by Adapting Neural Networks



Human Fixation Maps

Huang et al. 15

# Applications

Use a pre-trained CNN as a feature extractor

#### Fine-tune on limited data

#### Train from scratch on big data

### **Places Recognition**



image im

10 million images with 400+ unique scene categories

places2.csail.mit.edu

# Semantic Segmentation

#### Learning Deconvolution Network for Semantic Segmentation



Noh et al. 15

### Semantic Segmentation



















Noh et al. 15

# **Depth Map Prediction**

Depth Map Prediction from a Single Image using a Multi-Scale Deep Network



Eigen and Fergus 14

### **Multiple tasks predictions**



#### taskonomy.stanford.edu



Dwivedi & Roig, CVPR 19

#### Zamir et al., CVPR 2018

# Applications

#### not only for vision...



Statistical parametric speech synthesis using deep neural networks

Zen et. al 13

# Applications

End-to-End Deep Neural Network for Automatic Speech Recognition



phonemes recognition

Song and Cai 15

# Exploring vision tasks representation in the brain

Can we assess functions of a brain area by comparing the correlation of its responses with a large set of diverse models trained on different computer vision tasks?



#### Mick Bonner

Navigational Affordance Cortical Responses Explained by Semantic Segmentation model, ECCVW 2018. Explaining Scene-selective Visual Areas Using Task-specific Deep Neural Network Representations, submitted. Ext. in prep.<sup>69</sup>

### **Applications - Frameworks**

pyTorch \* Python \* <u>http://pytorch.org</u>

TensorFlow \* Python, JavaScript \* <u>https://www.tensorflow.org</u>

▶Keras

\* Python, high level API on top of TensorFlow

\* https://keras.io

▶Caffe

\* C++ with Matlab and Python interfaces

\* <u>http://caffe.berkeleyvision.org</u>



#### The Algonauts Project

**Explaining the Human Visual Brain** 

| Time               | Event                                                                |
|--------------------|----------------------------------------------------------------------|
| 12:30 pm - 1:00 pm | Registration / Welcome                                               |
| 1:00 pm - 2:00 pm  | Introduction to Neural Networks<br>Gemma Roig                        |
| 2:00 pm - 2:15 pm  | BREAK                                                                |
| 2:15 pm - 3:15 pm  | Introduction to Brain Imaging: fMRI and MEG/EEG<br>Yalda Mohsenzadeh |
| 3:15 pm - 3:30 pm  | BREAK                                                                |
| 3:30 pm - 4:30 pm  | Comparing Brains and DNNs: Methods and Findings<br>Martin Hebart     |
| 4:30 pm - 4:45 pm  | BREAK                                                                |
| 4:45 pm - 5:45 pm  | Comparing Brains and DNNs: Theory of Science<br>Radoslaw Cichy       |
| 5:45 pm - 6:00pm   | Summary                                                              |
## The Algonauts Project

**Explaining the Human Visual Brain** 

**Workshop and Challenge** 

Dates: July 19-20, 2019

Place: MIT, Cambridge, MA

algonauts.csail.mit.edu

## **The Algonauts Project**

**Explaining the Human Visual Brain** 

| 20 July Schedule    | Event                                               |
|---------------------|-----------------------------------------------------|
| 8:30 am – 9:00 am   | Breakfast                                           |
| 9:00 am – 9:15 am   | Introduction by Radoslaw Cichy                      |
| 9:15 am – 9:35 am   | Matt Botvinick                                      |
| 9:35 am – 9:55 am   | Aude Oliva                                          |
| 9:55 am – 10:15 am  | Thomas Naselaris                                    |
| 10:15 am – 11:00 am | Posters and Coffee                                  |
| 11:00 am – 11:20 am | David Cox                                           |
| 11:20 am – 11:40 am | James DiCarlo                                       |
| 11:40 am – 12:00 pm | Kendrick Kay                                        |
| 12:00 pm – 1:30 pm  | Lunch on Your Own                                   |
| 1:30 pm – 1:50 pm   | Introduction to the Algonauts Challenge by Radoslaw |
| 1:50 pm – 2:50 pm   | Invited Talks: Challenge Winners                    |
| 2:50 pm – 3:30 pm   | Posters and Coffee                                  |
| 3:30 pm – 3:50 pm   | Talia Konkle                                        |
| 3:50 pm – 4:10 pm   | Nikolaus Kriegeskorte                               |
| 4:10 pm – 4:30 pm   | Jack Gallant                                        |
| 4:30 pm – 5:00 pm   | Panel Discussion with Speakers                      |
| 5:00 pm – 6:30 pm   | Reception                                           |

## The Algonauts Project

**Explaining the Human Visual Brain** 

**Workshop and Challenge** 

Dates: July 19-20, 2019

Place: MIT, Cambridge, MA

algonauts.csail.mit.edu