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t =20

while dead==False: N
thought[t] = £ (thought[:t],

behavior
worldl[:t],
plans[:t]) ‘A\
if thought[t] 1is fatal:
dead = True

else:
t += 1

infer the human algorithm



What should the human (visual) algorithm do?

Arbitrary queries over representations



Does thé/ogt s tecpeinty ears?

TN

A dog is there.

N
clamped
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Breedlove, St-Yves, Naselaris et al., in rev.



HOW TO TEST NETWORK AGAINST HUMAN BRAINS?



An experiment:

Cue Picture

“ababie’

Breedlove, St-Yves, Naselaris et al., in rev.
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Imagine
objects



Breedlove, St-Yves, Naselaris et al., in rev.



ababie

Breedlove, St-Yves, Naselaris et al., in rev.



VISION Objects presented
in 8 diff positions

Breedlove, St-Yves, Naselaris et al., in rev.



Prediction accuracy maps for visual and imagery encoding models

Visual encoding model
(VEM) predicting voxel-
wise brain activity during
visual task

Imagery encoding model
(IEM) predicting voxel-
wise brain activity during
iImagery task



Tuning to seen and imagined spatial frequencies
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Receptive fields for seen and imagined stimuli
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Receptive fields for seen and imagined stimuli

& o

—— ——

RF size shift RF eccentricity
shift

>
>
>

|_\

mean size shift (deg)
vis larger img larger
o

img more foveal vis more foveal

mean eccentricity shift (deg)

€

NI ©
-\-\-\-\S%féé”
A\

Breedlove, St-Yves, Naselaris et al., in rev.



A DEEP GENERATIVE MODEL CAN
PREDICT DIFFERENCES IN
ENCODING OF SEEN AND MENTAL
IMAGES



BUT IS THERE A DEEP GENERATIVE
MODEL THAT CAN ACCURATELY
PREDICT ACTIVITY DURING VISION OF
NATURAL SCENES?



Prediction Accuracy (r)
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A DCNN-based
encoding model
yields more accurate
predictions of brain
activity in all visual
areas than an
encoding model
based on a state-of-
the-art deep
generative network.

Han et al, Neuroimage 2019



SO IS THAT A“NO™ ON THE GENERATIVE MODEL
IDEA?

PERHAPS THE "RIGHT” GENERATIVE MODEL IS HARD
TO LEARN FROM IMAGE DATA ALONE.

MIGHT WE INFER IT DIRECTLY FROM BRAIN
RESPONSES?



Natural Scenes Dataset



IT'S NOT YET CLEAR IF THIS WILL WORK.
BUT IT'S CLEAR THAT MORE DATA REALLY HELPS



DCNN- vs. Gabor- DCNN- vs. Gabor-based

based encoding models, encoding models, ~5K data
~1.5K data samples samples from the (incomplete)
from vim-1 NSD

Wavelet Prediction Accuracy
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DCNN- vs. Gabor-based
encoding models, ~5K data

samples from the (incomplete)
NSD

0.0

0.6

0.8

80

60

40

N
o

Posterior

Anterior

Average Coronal Slice Location

trained validation accuracy

Data-driven vs. DCNN-based
encoding models, ~5K data
samples from the (incomplete)
NSD

0.8

-0.2 0.0 0.2 0.4 0.6
reference validation accuracy

0.8



TAKE-HOME

THE VISUAL SYSTEM CAN POSE
AND ANSWER MANY DIFFERENT
QUERIES. SO SHOULD OUR
MODELS.

A DEEP GENERATIVE MODEL CAN
PREDICT DIFFERENCES IN
ENCODING OF SEEN AND MENTAL
IMAGES...



TAKE-HOME

...BUT CANNOT PREDICT RESPONSES TO

NATURAL SCENES AS ACCURATELY AS

MODELS BASED ON A DISCRIMINATIVE
NETWORK.

WE NEED BETTER THEORY. AND MORE
DATA.

MORE DATA IS ON THE WAY.
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