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How can we test
neural network models
with brain-activity data?



Predicting representational spaces
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Predicting representational spaces
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Predicting representational spaces
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Predicting representational spaces
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| Core commonality: All three test hypotheses about the
| second moment of the activity profiles.
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The onion of brain representations
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The onion of brain representations
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Representational similarity analysis
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Representational feature weighting with
non-negative least-squares

model RDM
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Representational feature weighting with
non-negative least-squares
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Deep convolutional networks predict
IT representational geometry

model comparisons (stimulus bootstrap, p < 0.05,
Bonferroni corrected for all pairwise comparisons)
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Do recurrent neural networks
provide better models of vision?

Courtney Spoerer



Recurrent networks can recycle their imited
computational resources over time.
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This might boost the performance of a physically finite
model or brain.

Kriegeskorte & Golan 2019



Layer 1 lateral connectivity Is consistent
with primate V1 connectivity

RCNN, layer 1, lateral connectivity templates
(first 5 principal components)
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Recurrent models can trade off
speed of computation for accuracy
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Recurrent models can trade off
speed of computation for accuracy

recurrent convolutional
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RCNN reaction times tend to be slower
for iImages humans are uncertain about
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Tim Kietzmann

Can recurrent neural network models
capture the representational dynamics
In the human ventral stream?
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Fitting model representational dynamics
with deep representational distance learning

McClure & Kriegeskorte 2016
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Task: find an image-computable network to model the first 300ms
of representational dynamics of the ventral stream.



noise-normalised RDM movie correlation
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Recurrent models better explain
representations and their dynamics

magnetoencephalography functional magnetic resonance imaging
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Recurrent networks significantly outperform ramping feedforward models
in predicting ventral-stream representations (MEG and fMRI).



How can we build neural network models
of mind and brain?
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different sets of stimuli with brain and behavioral data
different tasks » inferential model selection (model
Units parameters learned for a task)
stochasticity « reweighting of units
context-modulation « linear remixing of units

Architecture
skipping connections
recurrent connections

» deep learning of model parameters
from brain-activity data



