Cognitive science

Computational neuroscience

Cognitive computational neuroscience of vision

Nikolaus Kriegeskorte

Department of Psychology, Department of Neuroscience Zuckerman Mind Brain Behavior Institute Affiliated member, Electrical Engineering, Columbia University

Artificial intelligence

Cognitive computational neuroscience

Cognitive science

Artificial intelligence Computational neuroscience **neural network models** A common **language** for expressing theories about brain information processing

Kriegeskorte & **Douglas** 2018

How can we test neural network models with brain-activity data?

Diedrichsen & **Kriegeskorte** 2017, **Kriegeskorte** & **Diedrichsen** 2019

Diedrichsen & **Kriegeskorte** 2017, **Kriegeskorte** & **Diedrichsen** 2019

Diedrichsen & **Kriegeskorte** 2017, **Kriegeskorte** & **Diedrichsen** 2019

The onion of brain representations

Kriegeskorte & **Diedrichsen** 2019

The onion of brain representations

Kriegeskorte & **Diedrichsen** 2019

- stimuli → **stimuli** Representational similarity analysis

Representational feature weighting with non-negative least-squares

Representational feature weighting with non-negative least-squares

$$
\mathbf{w} = \arg \min_{\mathbf{w} \in \mathbf{R}^{+n}} \sum_{i \neq j} \left[d_{i,j}^2 - \hat{d}_{i,j}^2 \right]^2 = \arg \min_{\mathbf{w} \in \mathbf{R}^{+n}} \sum_{i \neq j} \left[d^2 - \sum_{k=1}^n w_k^2 \cdot \text{RDM}_k \right]_{i,j}^2
$$

w^k weight given to model feature *k f k (i)* model feature *k* for stimulus *i di,j* distance between stimuli *i,j* **w** is the weight vector [w_{γ} w_{2} ... w_{k}] that minimizes the sum of squared errors

Deep convolutional networks predict IT representational geometry

Khaligh-Razavi & **Kriegeskorte** 2014, **Nili** et al. 2014 (RSA Toolbox), **Storrs** et al. (in prep.)

Do *recurrent* **neural networks provide better models of vision?**

Courtney Spoerer

Recurrent networks can recycle their limited computational resources over time.

This might boost the performance of a physically finite model or brain.

Kriegeskorte & **Golan** 2019

Layer 1 lateral connectivity is consistent with primate V1 connectivity

RCNN, layer 1, lateral connectivity templates (first 5 principal components)

Spoerer et al. pp2019

Recurrent models can trade off speed of computation for accuracy

Spoerer et al. pp2019

Recurrent models can trade off speed of computation for accuracy

Spoerer et al. pp2019

RCNN reaction times tend to be slower for images humans are uncertain about

Tim Kietzmann

Can recurrent neural network models capture the representational dynamics in the human ventral stream?

Fitting model representational dynamics with *deep representational distance learning*

McClure & Kriegeskorte 2016

Task: find an image-computable network to model the first 300ms of representational dynamics of the ventral stream.

Recurrent models better explain representations and their dynamics

Recurrent networks significantly outperform ramping feedforward models in predicting ventral-stream representations (MEG and fMRI).

How can we build neural network models of mind and brain?

skipping connections • recurrent connections • **deep learning of model parameters** from brain-activity data