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A common language for

expressing theories about

brain information processing



How can we test

neural network models

with brain-activity data?
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Predicting representational spaces

encoding

model

representational similarity

analysis
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Predicting representational spaces

model activity-profiles distribution

encoding

model

pattern component

model

representational similarity

analysis

model representational

distances

model each response

separately
model stimulus-by-stimulus matrix

of summary statistics

Diedrichsen & Kriegeskorte 2017, Kriegeskorte & Diedrichsen 2019
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Core commonality: All three test hypotheses about the

second moment of the activity profiles.
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1 spatially organized neuronal population code  
(neuronal locations and activity profiles 

)L U

2 activity-profiles distribution
(activity profiles or all moments U

of activity-profiles distribution)

3 representational geometry
(2 moment of activity profiles or

nd
G

representational distance matrix )D

4 total encoded information
(downstream neuron can perform arbitrary

linear or nonlinear readout from all neurons)

5 linear neuronal readout
(downstream neuron can perform

linear readout from all neurons)

6 restricted-input linear readout
(downstream neuron can perform linear 

readout from a limited number of neurons)

7 local linear readout
(downstream neuron can perform linear or radial-basis

readout from neurons in a restricted spatial neighborhood)

The onion of brain representations
information potentially used
by researchers

information potentially extracted
by single readout neurons

encoded information

explicitimplicit

researcher information

focusedcomprehensive
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representational 

dissimilarity matrix

(RDM)

dissimilarity

(e.g. crossvalidated Mahalanobis

distance estimator)

Representational similarity analysis

!

Kriegeskorte et al. 2008



Representational feature weighting with

non-negative least-squares

f1 

w2 f2

f2 fk

w1 f1 wk fk

.           .            .

.           .            .

model RDM

weighted-model

RDM



Representational feature weighting with

non-negative least-squares

wk weight given to model feature k

fk(i) model feature k for stimulus i

di,j distance between stimuli i,j

w is the weight vector [w1 w2 ... wk] that minimizes the sum of squared errors

𝐰 = arg min
𝐰∈𝐑+𝒏
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= weighted-model RDM
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The squared distance RDM 

of weighted model features 

equals a weighted sum 

of single-feature RDMs.

model feature kweight k

stimuli i, j

predicted

distance



convolutional fully
connected

weighted combination of
layers and SVM discriminants 

highest accuracy any

model can achieve

other subjects’ average

as model

accuracy above 0

p < 0.05, Bonf. corr.

(stimulus bootstrap)

SE

(stimulus bootstrap)

Khaligh-Razavi & Kriegeskorte 2014, Nili et al. 2014 (RSA Toolbox), Storrs et al. (in prep.)

model comparisons (stimulus bootstrap, p < 0.05, 

Bonferroni corrected for all pairwise comparisons)

Deep convolutional networks predict

IT representational geometry

accuracy

of human IT

dissimilarity matrix

prediction
[group-average of Spearman’s  ]

0.7
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0

accuracy below noise ceiling

p < 0.05, Bonf. corr.

(stimulus bootstrap)

noise ceiling

performance range of

computer-vision features



Do recurrent neural networks 

provide better models of vision?

Courtney Spoerer



Recurrent networks can recycle their limited 

computational resources over time.

Kriegeskorte & Golan 2019

This might boost the performance of a physically finite 
model or brain.



Layer 1 lateral connectivity is consistent

with primate V1 connectivity

RCNN, layer 1, lateral connectivity templates
(first 5 principal components) 

Spoerer et al. pp2019
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[floating-point operations ×1011]

Recurrent models can trade off

speed of computation for accuracy

feedforward models
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RCNN reaction times tend to be slower

for images humans are uncertain about

correlation

between 

human certainty and 

RCNN reaction time

[Spearman]



Tim Kietzmann

Can recurrent neural network models 

capture the representational dynamics
in the human ventral stream?



Fitting model representational dynamics

with deep representational distance learning

Task: find an image-computable network to model the first 300ms

of representational dynamics of the ventral stream.

McClure & Kriegeskorte 2016



magnetoencephalography functional magnetic resonance imaging

Recurrent networks significantly outperform ramping feedforward models 

in predicting ventral-stream representations (MEG and fMRI).

feedforward recurrent

Recurrent models better explain 

representations and their dynamics



How can we build neural network models

of mind and brain?

big models

Divergent: Exploring the 

space of computational 

models with world data
• Training

• different sets of stimuli

• different tasks

• Units

• stochasticity

• context-modulation

• Architecture

• skipping connections

• recurrent connections

Convergent: Constraining models 

with brain and behavioral data
• inferential model selection (model 

parameters learned for a task)

• reweighting of units

• linear remixing of units

• deep learning of model parameters

from brain-activity data

big world

data

big behavioral

data

big brain

data


